Redefining the structure of the mouse connexin43 gene: selective promoter usage and alternative splicing mechanisms yield transcripts with different translational efficiencies.
نویسندگان
چکیده
The connexin43 (cx43) gene was originally described as consisting of two exons, one coding for most of the 5'-untranslated region (5'-UTR), and the other for the protein sequence and 3'-UTR. We now report that in mouse four additional exons are expressed, all coding for novel 5'-UTRs. Altogether, we found nine different cx43 mRNA species (GenBank accession numbers NM010288, and AY427554 through AY427561) generated by differential promoter usage and alternative splicing mechanisms. The relative abundance of these different mRNAs varied with the tissue source. In addition, the different transcripts showed varying translational efficiencies in several cell lines, indicating the presence of cis-RNA elements that regulate cx43 translation. We propose that it is the promoter driving the expression of the cx43 gene that determines exon choice in the downstream splicing events in a cell-type-dependent fashion. This in turn will affect the translation efficiency of the transcript orchestrating the events that lead to the final expression profile of cx43. Since a similar organization of the cx43 gene was also observed in rat it is likely that the complex regulation of cx43 expression involving transcription, splicing and translation mechanisms is a common trait conserved during evolution.
منابع مشابه
Expression of HNF4α isoforms in mouse liver development is regulated by sequential promoter usage and constitutive 3′ end splicing
Hepatocyte nuclear factor 4alpha (HNF4alpha) is essential for the establishment and maintenance of liver-specific gene expression. The HNF4alpha gene codes for several isoforms whose developmental and physiological relevance has not yet been explored. HNF4alpha1 and HNF4alpha7 originate from different promoters, while alternative splicing in 3' leads to HNF4alpha2 and HNF4alpha8, respectively. ...
متن کاملPromoter choice influences alternative splicing and determines the balance of isoforms expressed from the mouse bcl-X gene.
Differential splicing from the bcl-X gene generates several isoforms with opposite effects on the apoptotic response. To explore the mechanism controlling the balance between the various isoforms, we have characterized the 5' region of the mouse bcl-X gene. We identified three new promoters in addition to the two previously described (Grillot, D. A., M., G.-G., Ekhterae, D., Duan, L., Inohara, ...
متن کاملOvol2, a mammalian homolog of Drosophila ovo: gene structure, chromosomal mapping, and aberrant expression in blind-sterile mice.
The ovo gene family consists of evolutionarily conserved genes including those cloned from Caenorhabditis elegans, Drosophila melanogaster, mouse, and human. Here we report the isolation and characterization of mouse Ovol2 (also known as movol2 or movo2) and provide evidence supporting the existence of multiple Ovol2 transcripts. These transcripts are produced by alternative promoter usage and ...
متن کاملThe New Phase of Transcriptome Analysis
We have established a large-scale system named CAGE (CAP-based analysis of gene expression), for identifying the 5' Transcription Start Sites (TSS) and promoter regions. With this system we have obtained over 10,000,000 CAGE tags from human and mouse. We have also determined the sequences of more than 100,000 full-length cDNAs from mouse, which were subsequently used to study the transcriptiona...
متن کاملDifferential regulation of brain-derived neurotrophic factor transcripts during the consolidation of fear learning.
Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5'-exon and a common 3'-coding exon. This study describes novel evidence for the differential usage of alternative BDNF promoters and 5'-exons d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 15 شماره
صفحات -
تاریخ انتشار 2004